Isotope-edited FTIR of alkaline phosphatase resolves paradoxical ligand binding properties and suggests a role for ground-state destabilization.

نویسندگان

  • Logan D Andrews
  • Hua Deng
  • Daniel Herschlag
چکیده

Escherichia coli alkaline phosphatase (AP) can hydrolyze a variety of chemically diverse phosphate monoesters while making contacts solely to the transferred phosphoryl group and its incoming and outgoing atoms. Strong interactions between AP and the transferred phosphoryl group are not present in the ground state despite the apparent similarity of the phosphoryl group in the ground and transition states. Such modest ground-state affinity is required to curtail substrate saturation and product inhibition and to allow efficient catalysis. To investigate how AP achieves limited affinity for its ground state, we first compared binding affinities of several related AP ligands. This comparison revealed a paradox: AP has a much stronger affinity for inorganic phosphate (P(i)) than for related compounds that are similar to P(i) geometrically and in overall charge but lack a transferable proton. We postulated that the P(i) proton could play an important role via transfer to the nearby anion, the active site serine nucleophile (Ser102), resulting in the attenuation of electrostatic repulsion between bound P(i) and the Ser102 oxyanion and the binding of P(i) in its trianionic form adjacent to a now neutral Ser residue. To test this model, isotope-edited Fourier transform infrared (FTIR) spectroscopy was used to investigate the ionic structure of AP-bound P(i). The FTIR results indicate that the P(i) trianion is bound and, in conjunction with previous studies of pH-dependent P(i) binding and other results, suggest that P(i) dianion transfers its proton to the Ser102 anion of AP. This internal proton-transfer results in stronger P(i) binding presumably because the additional negative charge on the trianionic P(i) allows stronger electrostatic interactions within the AP active site and because the electrostatic repulsion between bound P(i) and anionic Ser102 is eliminated when the transferred P(i) proton neutralizes Ser102. Indeed, when Ser102 is neutralized the P(i) trianion binds AP with a calculated K(d) of ≤290 fM. These results suggest that electrostatic repulsion between Ser102 and negatively charged phosphate ester substrates contributes to catalysis by the preferential destabilization of the reaction's E·S ground state.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Alkaline Phosphatase Lacking Wheat Germ Agglutinin Binding Sites Useful Enzyme for Lectin Assays with Comparable Activity to the Calf Enzyme

Despite the availability of various alkaline phosphatase (ALP) isoenzymes, the calf enzyme is being used in current enzyme assays as the detector enzyme. The glycosylation pattern of this enzyme makes it a suitable ligand for binding to wheat germ agglutinin lectin (WGA). As a result of this property, the enzyme can not be used as a conjugate with this lectin, and the calf enzyme conjugates can...

متن کامل

Ground State Destabilization by Anionic Nucleophiles Contributes to the Activity of Phosphoryl Transfer Enzymes

Enzymes stabilize transition states of reactions while limiting binding to ground states, as is generally required for any catalyst. Alkaline Phosphatase (AP) and other nonspecific phosphatases are some of Nature's most impressive catalysts, achieving preferential transition state over ground state stabilization of more than 10²²-fold while utilizing interactions with only the five atoms attach...

متن کامل

Evaluation of [18F]FPTT Molecular structure and its binding to progesterone receptor (PR) for PET scan of breast cancer FPTT Molecular structure and its binding to progesterone receptor (PR) for PET scan of breast cancer

Breast cancer is a complicated disease that it is accompanied by different symptoms. Diagnosis of this disease is performed by various techniques. Using Radiopharmaceuticals is a new method to diagnose the said tumors. [18F]-FPTT is one of these nuclear medicines for detection of breast cancer. It seems that the binding of the title radiopharmaceutical to the progesterone receptor is...

متن کامل

Design of Novel Drugs (P3TZ, H2P3TZ, M2P3TZ, H4P3TZ and M4P3TZ) Based on Zonisamide for Autism Treatment by Binding to Potassium Voltage-gated Channel Subfamily D Member 2 (Kv4.2)

The present research article relates to the discovery of the novel drugs based on Zonisamide to treatment of autism disease. In first step, the electronic properties, reactivity and stability of the said compound are discussed. To attain these properties, the said molecular structure is optimized using B3LYP/6-311++G(d,p) level of theory at room temperature. The frontier molecular orbitals (FMO...

متن کامل

Ground-state electronic destabilization via hyperconjugation in aspartate aminotransferase.

Binding isotope effects for l-aspartate reacting with the inactive K258A mutant of PLP-dependent aspartate aminotransferase to give a stable external aldimine intermediate are reported. They provide direct evidence for electronic ground-state destabilization via hyperconjugation. The smaller equilibrium isotope effect with deazaPLP-reconstituted K258A indicates that the pyridine nitrogen plays ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of the American Chemical Society

دوره 133 30  شماره 

صفحات  -

تاریخ انتشار 2011